Análisis de Clústeres para Segmentar Estudiantes de Inglés según Estilos de Aprendizaje y Rendimiento a nivel universitario en Latinoamérica

Jessica Valentina Galimberti, Lina Yolanda Morales Rodas, Francisco Josue Galvez Calderón

Resumen


El análisis de clústeres aplicado a estudiantes universitarios de inglés en Latinoamérica permitió segmentar la población en perfiles diferenciados según estilos de aprendizaje y rendimiento académico. Utilizando instrumentos validados como el cuestionario VARK y pruebas estandarizadas (TOEFL, IELTS), se identificaron dos grupos principales: uno con predominio de aprendices visuales, rendimiento académico ligeramente superior y mayor representación en carreras de ingeniería y educación; y otro con predominio auditivo, estrategias colaborativas y presencia significativa en carreras de negocios. Ambos clusters presentan similitudes en distribución de género y origen geográfico (México y Colombia). Los resultados confirman la validez de los instrumentos empleados y subrayan la importancia de adaptar las estrategias pedagógicas a las características de cada grupo para mejorar la equidad y los resultados educativos. Este enfoque permite fundamentar intervenciones personalizadas y optimizar la enseñanza del inglés en la región.


Palabras clave


clústeres; estilos de aprendizaje; rendimiento académico; educación superior.

Texto completo:

PDF

Referencias


An introduction to cluster analysis for segmentation. (n.d.). Retrieved June 21, 2025, from https://www.segmentationstudyguide.com/an-introduction-to-cluster-analysis-for-segmentation/

Andersen, G. (2024, February 8). Unlocking insights—The benefits of clustering analysis in admissions bi. https://moldstud.com/articles/p-exploring-the-benefits-of-clustering-analysis-in-admissions-bi

Blog, S. N. (2024, October 21). Key trends in Latin American higher education: Private institutions, diversity, and online learning. SRHE Blog. https://srheblog.com/2024/10/21/key-trends-in-latin-american-higher-education-private-institutions-diversity-and-online-learning/

Burgo, C. (2024). Some perspectives on university challenges for latinx undergraduates. Hispanic Studies Review, 8(2). https://hispanicstudiesreview.cofc.edu/article/123156-some-perspectives-on-university-challenges-for-latinx-undergraduates

Caceres, M. (n.d.). Breaking Barriers: Enhancing Accessibility for Latin American Students in U.S. Higher Education. https://poetcommons.whittier.edu/scholars/48 (Original work published 2024)

Chahuán-Jiménez, K., Lara-Yergues, E., Garrido-Araya, D., Salum-Alvarado, E., Hurtado-Arenas, P., & Rubilar-Torrealba, R. (2025). Cluster analysis of digital competencies among professors in higher education. Frontiers in Education, 10, 1499856. https://doi.org/10.3389/feduc.2025.1499856

Cluster analysis for segmentation gets complicated. (n.d.). TRC Insights. Retrieved June 21, 2025, from https://trcmarketresearch.com/whitepaper/cluster-analysis-gets-complicated/

Denaro, K., Molinaro, M., Fiorini, S., Matz, R. L., Mead, C., Motika, M., Tarchinski, N., Valdivia Medinaceli, M., Byrd, W. C., Koester, B., Rin Lee, H., McKay, T., & Sato, B. K. (2024). A multi-institutional cluster analysis to identify groups of courses with exemplary opportunity gaps for undergraduate students in the biological sciences. CBE—Life Sciences Education, 23(4), ar53. https://doi.org/10.1187/cbe.24-02-0051

Fernández-Alonso, R., Woitschach, P., Álvarez-Díaz, M., González-López, A. M., Cuesta, M., & Muñiz, J. (2019). Homework and academic achievement in latin america: A multilevel approach. Frontiers in Psychology, 10, 95. https://doi.org/10.3389/fpsyg.2019.00095

Institute, G. A. (n.d.). Higher education and social mobility in latin america: Challenges and opportunities. Retrieved June 21, 2025, from https://americas.georgetown.edu/events/higher-education-and-social-mobility-in-latin-america-challenges-and-opportunities

Juan Vicente Bogado Machuca & Nathalia Romina González Duarte. (2024). Early detection of university dropout with cluster analysis and machine learning classification techniques. Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE). https://doi.org/10.55592/cilamce.v6i06.10152

Karimov, A., Saarela, M., & Kärkkäinen, T. (2023). Clustering to define interview participants for analyzing student feedback: A case of Legends of Learning. 234–243. https://doi.org/10.5281/zenodo.8115667

Korean Association For Learner-Centered Curriculum And Instruction, Park, Y., & Kang, H. (2024). A case study on predicting academic achievement and cluster analysis by sub-factors of learning strategies for college freshmen. Korean Association For Learner-Centered Curriculum And Instruction, 24(24), 583–602. https://doi.org/10.22251/jlcci.2024.24.24.583

Morosini, M. C. (2014). Qualidade da educação superior e contextos emergentes. Avaliação: Revista Da Avaliação Da Educação Superior (Campinas), 19(2), 385–405. https://doi.org/10.1590/S1414-40772014000200007

Murphy, K., López-Pernas, S., & Saqr, M. (2024). Dissimilarity-based cluster analysis of educational data: A comparative tutorial using r. In M. Saqr & S. López-Pernas (Eds.), Learning Analytics Methods and Tutorials (pp. 231–283). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-54464-4_8

Palupi, A. D., Suwartono, T., & Sukawati, D. (2024). Can different learning styles impact efl learners’ toefl achievement? Premise: Journal of English Education, 13(1), 51. https://doi.org/10.24127/pj.v13i1.8751

Pamungkas, A. A. P., Maryono, D., & Budiyanto, C. W. (2021). Cluster analysis for student grouping based on index of learning styles. Journal of Physics: Conference Series, 1808(1), 012023. https://doi.org/10.1088/1742-6596/1808/1/012023

Phinney, J. S., Dennis, J. M., & Gutierrez, D. M. (2005). College orientation profiles of latino students from low socioeconomic backgrounds: A cluster analytic approach. Hispanic Journal of Behavioral Sciences, 27(4), 387–408. https://doi.org/10.1177/0739986305280692

Tapias, M. G., Cué, J. L. G., Vivas, M., & Rincón, J. A. S. (2011). Estudio comparativo de los estilos de aprendizajes del alumnado que inicia sus estudios universitarios en diversas facultades de venezuela, méxico y españa. Revista de Estilos de Aprendizaje, 4(7). https://doi.org/10.55777/rea.v4i7.921

Wang, Z. (2022). Higher education management and student achievement assessment method based on clustering algorithm. Computational Intelligence and Neuroscience, 2022, 1–10. https://doi.org/10.1155/2022/4703975

What drives student performance in Latin America? | McKinsey. (n.d.). Retrieved June 21, 2025, from https://www.mckinsey.com/industries/education/our-insights/what-drives-student-performance-in-latin-america

What is cluster analysis? A beginner’s guide for 2025. (2023, October 12). https://careerfoundry.com/en/blog/data-analytics/what-is-cluster-analysis/

Yu, M. (2022). Research on intelligent clustering model of undergraduate english achievement based on k-means algorithm. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE), 378–380. https://doi.org/10.1109/ECICE55674.2022.10042941

Zheng, L. (2022). Clustering algorithm in english language learning pattern matching under big data framework. Computational Intelligence and Neuroscience, 2022, 1–11. https://doi.org/10.1155/2022/1380046.




DOI: https://doi.org/10.23857/pc.v10i6.9828

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/