El gas natural como fuente de energía transitoria hacia la descarbonización del sector energético
Resumen
El presente artículo de revisión bibliográfica tiene como objetivo analizar de manera crítica el papel del gas natural como fuente de energía transitoria en el proceso de descarbonización del sector energético. En un contexto marcado por la urgencia climática se examinan las ventajas, limitaciones y controversias asociadas al uso del gas natural frente a otras fuentes energéticas. La metodología empleada consistió en una revisión sistemática de literatura científica publicada entre 2019 y 2025, utilizando bases de datos indexadas como Scopus, Web of Science y ScienceDirect. Los resultados se organizaron por subsectores de aplicación. En el transporte, el gas natural vehicular (GNV) mostró reducciones de hasta 25 % en CO₂ y más del 30 % en contaminantes locales, aunque su expansión está limitada por infraestructura insuficiente. En generación eléctrica, las plantas de ciclo combinado alcanzan eficiencias superiores al 60 % con una huella de carbono 50 % menor respecto al carbón. El uso domiciliario aporta mejoras en la calidad del aire urbano, aunque persisten emisiones fugitivas de metano. El gas natural licuado (GNL), si bien permite diversificación energética, presenta una huella de carbono variable debido a la licuefacción, transporte y regasificación. Finalmente, en el sector industrial, el gas natural es clave para procesos intensivos en energía y para la producción de hidrógeno azul, aunque se proyecta un desplazamiento progresivo hacia el hidrógeno verde. En conclusión, los hallazgos sugieren que el gas natural puede desempeñar un rol relevante como vector transitorio hacia una matriz energética más limpia, siempre que se implementen políticas de mitigación de emisiones y se limite su papel a escenarios de transición con una clara orientación hacia la sustitución por energías renovables.
Palabras clave
Texto completo:
PDFReferencias
Abass, A. Z., Pavlyuchenko, D. A., & Hussain, Z. S. (2021). Survey about impact voltage instability and transient stability for a power system with an integrated solar combined cycle plant in Iraq by using ETAP. Journal of Robotics and Control (JRC), 2(3), 134-139. https://doi.org/10.18196/jrc.2366
Achakulwisut, P., Erickson, P., & Koplow, D. (2021). Effect of subsidies and regulatory exemptions on 2020–2030 oil and gas production and profits in the United States. Environmental Research Letters, 16(8), 084023. https://doi.org/10.1088/1748-9326/ac0a10
Akroot, A., Almaktar, M., & Alasali, F. (2024). The Integration of Renewable Energy into a Fossil Fuel Power Generation System in Oil-Producing Countries: A Case Study of an Integrated Solar Combined Cycle at the Sarir Power Plant. Sustainability, 16(11), 4820. https://doi.org/10.3390/su16114820
Bade, S. O., Tomomewo, O. S., Meenakshisundaram, A., Ferron, P., & Oni, B. A. (2024). Economic, social, and regulatory challenges of green hydrogen production and utilization in the US: A review. International Journal of Hydrogen Energy, 49, 314-335. https://doi.org/10.1016/j.ijhydene.2023.08.157
Balcombe, P., Heggo, D. A., & Harrison, M. (2022). Total methane and CO2 emissions from liquefied natural gas carrier ships: the first primary measurements. Environmental science & technology, 56(13), 9632-9640. https://pubs.acs.org/doi/10.1021/acs.est.2c01383?goto=supporting-info
Balmes, J. R., Holm, S. M., McCormack, M. C., Hansel, N. N., Gerald, L. B., & Krishnan, J. A. (2023). Cooking with natural gas: just the facts, please. American journal of respiratory and critical care medicine, 207(8), 996-997. https://doi.org/10.1164/rccm.202302-0278VP
Barreña, M., Catalano, R. A., Paoloni, G., & Sierra, J. M. (2023). Uso de Biogás Licuado en el transporte de larga distancia de la producción de la PyME agropecuaria argentina. Potencial de producción y un análisis de rentabilidad. Perspectivas: Revista Científica de la Universidad de Belgrano, 6(1), 72-93. https://revistas.ub.edu.ar/index.php/Perspectivas/article/view/227
Brzęczek, M., & Kotowicz, J. (2024). Integration of alternative fuel production and combined cycle power plant using renewable energy sources. Applied Energy, 371, 123738. https://doi.org/10.1016/j.apenergy.2024.123738
Deng, W., Xie, X., Guo, Y., & Hu, G. (2024). Breakthroughs in CH4 capture technologies: Key to reducing fugitive methane emissions in the energy sector. Carbon Capture Science & Technology, 13, 100316. https://doi.org/10.1016/j.ccst.2024.100316
Erdener, B. C., Sergi, B., Guerra, O. J., Chueca, A. L., Pambour, K., Brancucci, C., & Hodge, B. M. (2023). A review of technical and regulatory limits for hydrogen blending in natural gas pipelines. International Journal of Hydrogen Energy, 48(14), 5595-5617. https://doi.org/10.1016/j.ijhydene.2022.10.254
Farag, M., Jeddi, S., & Kopp, J. H. (2025). Global Natural Gas Market Integration: The Role of LNG Trade and Infrastructure Constraints. The World Economy. https://doi.org/10.1111/twec.13699
Filonchyk, M., Peterson, M. P., Zhang, L., Hurynovich, V., & He, Y. (2024). Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Science of The Total Environment, 173359. https://doi.org/10.1016/j.scitotenv.2024.173359
Halser, C., & Paraschiv, F. (2022). Pathways to overcoming natural gas dependency on Russia—the German case. Energies, 15(14), 4939. https://doi.org/10.3390/en15144939
Hashimoto, S. (2021). Why doesn't Japan have a natural gas pipeline network?: consideration from the determinant of the choice between LNG tank trucks and pipelines. International Journal of Energy Economics and Policy, 11(3), 346-353. https://doi.org/10.32479/ijeep.11049
He, X., Wallington, T. J., Anderson, J. E., Keoleian, G. A., Shen, W., De Kleine, R., ... & Winkler, S. (2021). Life-cycle greenhouse gas emission benefits of natural gas vehicles. ACS Sustainable Chemistry & Engineering, 9(23), 7813-7823. https://pubs.acs.org/doi/10.1021/acssuschemeng.1c01324?goto=supporting-info
Kemfert, C., Präger, F., Braunger, I., Hoffart, F. M., & Brauers, H. (2022). The expansion of natural gas infrastructure puts energy transitions at risk. Nature Energy, 7(7), 582-587. https://doi.org/10.1038/s41560-022-01060-3
Kumar, S., Baalisampang, T., Arzaghi, E., Garaniya, V., Abbassi, R., & Salehi, F. (2023). Synergy of green hydrogen sector with offshore industries: Opportunities and challenges for a safe and sustainable hydrogen economy. Journal of Cleaner Production, 384, 135545. https://doi.org/10.1016/j.jclepro.2022.135545
Lebel, E. D., Michanowicz, D. R., Bilsback, K. R., Hill, L. A. L., Goldman, J. S., Domen, J. K., ... & Shonkoff, S. B. (2022). Composition, emissions, and air quality impacts of hazardous air pollutants in unburned natural gas from residential stoves in California. Environmental Science & Technology, 56(22), 15828-15838. https://pubs.acs.org/doi/10.1021/acs.est.2c02581?goto=supporting-info
Ma, N., Zhao, W., Wang, W., Li, X., & Zhou, H. (2024). Large scale of green hydrogen storage: Opportunities and challenges. International Journal of Hydrogen Energy, 50, 379-396. https://doi.org/10.1016/j.ijhydene.2023.09.021
Mannan, M., & Al-Ghamdi, S. G. (2021). Indoor air quality in buildings: a comprehensive review on the factors influencing air pollution in residential and commercial structure. International journal of environmental research and public health, 18(6), 3276. https://doi.org/10.3390/ijerph18063276
Massarweh, O., Al-khuzaei, M., Al-Shafi, M., Bicer, Y., & Abushaikha, A. S. (2023). Blue hydrogen production from natural gas reservoirs: A review of application and feasibility. Journal of CO2 Utilization, 70, 102438. https://doi.org/10.1016/j.jcou.2023.102438
Nicolle, A., & Massol, O. (2023). Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty. Energy Policy, 179, 113625. https://doi.org/10.1016/j.enpol.2023.113625
Otitoju, O., Oko, E., & Wang, M. (2021). Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation. Applied energy, 292, 116893. https://doi.org/10.1016/j.apenergy.2021.116893
Ozturk, M., & Dincer, I. (2021). A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy, 46(62), 31511-31522. https://doi.org/10.1016/j.ijhydene.2021.07.066
Pedersen, T. T., Gøtske, E. K., Dvorak, A., Andresen, G. B., & Victoria, M. (2022). Long-term implications of reduced gas imports on the decarbonization of the European energy system. Joule, 6(7), 1566-1580. https://doi.org/10.1016/j.joule.2022.06.023
Qureshi, Y., Ali, U., & Sher, F. (2021). Part load operation of natural gas fired power plant with CO2 capture system for selective exhaust gas recirculation. Applied Thermal Engineering, 190, 116808. https://doi.org/10.1016/j.applthermaleng.2021.116808
Quintino, F. M., Nascimento, N., & Fernandes, E. C. (2021). Aspects of hydrogen and biomethane introduction in natural gas infrastructure and equipment. Hydrogen, 2(3), 301-318. https://doi.org/10.3390/hydrogen2030016
Razmi, A. R., Hanifi, A. R., & Shahbakhti, M. (2024). Techno-economic analysis of a novel concept for the combination of methane pyrolysis in molten salt with heliostat solar field. Energy, 301(C). https://doi.org/10.1016/j.energy.2024.131644
Regufe, M. J., Pereira, A., Ferreira, A. F., Ribeiro, A. M., & Rodrigues, A. E. (2021). Current developments of carbon capture storage and/or utilization–looking for net-zero emissions defined in the Paris agreement. Energies, 14(9), 2406. https://doi.org/10.3390/en14092406
Remteng, C. (2022). A Review on the Role of Natural Gas in Nigeria’s Energy Transition’. Environmental Network Journal, 1(3). https://gwcnweb.org/wp-content/uploads/2023/08/ENJ-Vol1-Article3-Dec-2022.pdf
Ruhnau, O., Stiewe, C., Muessel, J., & Hirth, L. (2023). Natural gas savings in Germany during the 2022 energy crisis. Nature Energy, 8(6), 621-628. https://doi.org/10.1038/s41560-023-01260-5
Settino, J., Ferraro, V., & Morrone, P. (2023). Energy analysis of novel hybrid solar and natural gas combined cycle plants. Applied Thermal Engineering, 230, 120673. https://doi.org/10.1016/j.applthermaleng.2023.120673
Simonyan, A., Mosikyan, K., Balayan, R., & Shaghoyan, V. (2024). Altitude controller influence on environmental and economic performance of NGV fuel-powered engines. In E3S Web of Conferences (Vol. 549, p. 07010). EDP Sciences. https://doi.org/10.1051/e3sconf/202454907010
Street, T. E., Ali, A., Bertolo, C., & Pegg, M. J. (2025). Fugitive emissions from a residential natural gas system and appliances operating on hydrogen-blended natural gas (HBNG) fuels. International Journal of Hydrogen Energy, 118, 227-236. https://doi.org/10.1016/j.ijhydene.2025.03.097
Su, C. W., Qin, M., Chang, H. L., & Țăran, A. M. (2023). Which risks drive European natural gas bubbles? Novel evidence from geopolitics and climate. Resources Policy, 81, 103381. https://doi.org/10.1016/j.resourpol.2023.103381
Tuswan, T., Sari, D. P., Muttaqie, T., Prabowo, A. R., Soetardjo, M., Murwantono, T. T. P., ... & Yuniati, Y. (2023). Representative application of LNG-fuelled ships: a critical overview on potential GHG emission reductions and economic benefits. Brodogradnja: An International Journal of Naval Architecture and Ocean Engineering for Research and Development, 74(1), 63-83. https://doi.org/10.21278/brod74104
Wang, J., Ma, F., Bouri, E., & Zhong, J. (2022). Volatility of clean energy and natural gas, uncertainty indices, and global economic conditions. Energy Economics, 108, 105904. https://doi.org/10.1016/j.eneco.2022.105904
Wu, S., Li, T., Chen, R., Huang, S., Xu, F., & Wang, B. (2023). Transient performance of gas-engine-based power system on ships: an overview of modeling, optimization, and applications. Journal of Marine Science and Engineering, 11(12), 2321. https://doi.org/10.3390/jmse11122321
Yolcan, O. O. (2023). World energy outlook and state of renewable energy: 10-Year evaluation. Innovation and Green Development, 2(4), 100070. https://doi.org/10.1016/j.igd.2023.100070
Zhao, H., Chan, W. R., Cohn, S., Delp, W. W., Walker, I. S., & Singer, B. C. (2021). Indoor air quality in new and renovated low‐income apartments with mechanical ventilation and natural gas cooking in California. Indoor air, 31(3), 717-729. https://doi.org/10.1111/ina.12764
Zhang, H., Feng, H., Hewage, K., & Arashpour, M. (2022). Artificial neural network for predicting building energy performance: a surrogate energy retrofits decision support framework. Buildings, 12(6), 829. https://doi.org/10.3390/buildings12060829
Zhu, Y., Ross, G., Khaliukova, O., Roman-White, S. A., George, F. C., Hammerling, D., & Ravikumar, A. P. (2024). Multiscale Measurements of Greenhouse Gas Emissions at US Natural Gas Liquefaction Terminals. Environmental Science & Technology Letters, 12(1), 44-50. https://pubs.acs.org/doi/10.1021/acs.estlett.4c00713?goto=supporting-info
Zou, C., Li, J., Zhang, X., Jin, X., Xiong, B., Yu, H., ... & Pan, S. (2022). Industrial status, technological progress, challenges, and prospects of hydrogen energy. Natural Gas Industry B, 9(5), 427-447. https://doi.org/10.1016/j.ngib.2022.04.006.
DOI: https://doi.org/10.23857/pc.v10i6.9823
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/