Evaluación in vitro de la actividad antagonista de bacterias ácido lácticas aisladas de alimentos fermentados sobre Penicillium sp. y Aspergillus sp. de granos de quinua

Janneth María Gallegos Núñez, Liseth Verónica Andino Gualpa, Fausto René Guasgua Mipaz, Ana Rafaela Pacurucu Reyes

Resumen


Existen estudios que han demostrado el potencial antifúngico de ciertas cepas de bacterias ácido lácticas (BAL) y su eficiente aplicación para el control de estos contaminantes durante la producción y almacenamiento de alimentos. En consecuencia, el objetivo de este trabajo ha sido evaluar la actividad antagonista de BAL sobre Penicillium sp. y Aspergillus sp., hongos contaminantes aislados de granos de quinua Chenopodium quinua Willdenow. Se aislaron 40 cepas de bacterias ácido lácticas de alimentos fermentados de elaboración artesanal (pickles, chicha, suero lácteo y queso con cultivo lácteo) y de productos de marcas registradas con contenido de cepas probióticas (kumis, cápsulas de probióticos y fermento láctico) en agar Man, Rogosa y Sharpe (MRS). A partir de granos de quinua provenientes de diferentes zonas de la provincia de Chimborazo-Ecuador se obtuvieron 11 aislados de Penicillium y 4 de Aspergillus; una cepa del hongo Penicillium y una cepa del hongo Aspergillus participaron en el ensayo de superposición de placas en agar Malta frente a 40 aislados de bacterias ácido lácticas con potencial antifúngico. El 22,5% de las bacterias ácido lácticas aisladas demostraron una supresión media sobre Penicillium sp., mientras que el 15% de las BAL evidenciaron una supresión media sobre Aspergillus sp. Las bacterias ácido lácticas aisladas a partir de pickles y suero lácteo mostraron una actividad antifúngica superior, capacidad que podría atribuirse a la producción de metabolitos activos y a las características de la matriz donde se desarrollan.


Palabras clave


Bacterias ácido lácticas; Antagonismo; Aspergillus sp.; Penicillium sp.; Chenopodium quinua Willdenow; Alimentos fermentados.

Texto completo:

PDF HTML XML

Referencias


Alandia, G., Rodriguez, J. P., Jacobsen, S. E., Bazile, D., & Condori, B. (2020). Global expansion of quinoa and challenges for the Andean region. Global Food Security, 26(September), 100429. https://doi.org/10.1016/j.gfs.2020.100429

Asurmendi, P., Pascual, L., Dalcero, A., & Barberis, L. (2014). Incidence of lactic acid bacteria and Aspergillus flavus in brewer’s grains and evaluation of potential antifungal activity of these bacteria. Journal of Stored Products Research, 56, 33–37. https://doi.org/10.1016/j.jspr.2013.11.002

Ben Taheur, F., Mansour, C., Kouidhi, B., & Chaieb, K. (2019). Use of lactic acid bacteria for the inhibition of Aspergillus flavus and Aspergillus carbonarius growth and mycotoxin production. Toxicon, 166(March), 15–23. https://doi.org/10.1016/j.toxicon.2019.05.004

Brodmann, T., Endo, A., Gueimonde, M., Vinderola, G., Kneifel, W., de Vos, W. M., Salminen, S., & Gómez-Gallego, C. (2017). Safety of novel microbes for human consumption: Practical examples of assessment in the European Union. Frontiers in Microbiology, 8(SEP), 1–15. https://doi.org/10.3389/fmicb.2017.01725

Carillo, M., Ramírez, M., Martínez, J. (2006). Efecto de solutos sobre el crecimiento de hongos deteriorativos de alimentos. Sociedad Mexicana de Nutricion y Tecnologia de Los Alimentos, 5(2), 142–146.

Chen, H., H, J., Wang, Y., Du, G., Yan, X., & Cui, Y. (2021). Antifungal activity and mode of action of lactic acid bacteria isolated from kefir against Penicillium expansum. Food Control, 1, 130.

Cheong, E. Y. L., Sandhu, A., Jayabalan, J., Kieu Le, T. T., Nhiep, N. T., My Ho, H. T., Zwielehner, J., Bansal, N., & Turner, M. S. (2014). Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control, 46, 91–97. https://doi.org/10.1016/j.foodcont.2014.05.011

Coton, E., Coton, M., Hymery, N., Mounier, J., & Jany, J. L. (2020). Penicillium roqueforti: an overview of its genetics, physiology, metabolism and biotechnological applications. Fungal Biology Reviews, 34(2), 59–73. https://doi.org/10.1016/j.fbr.2020.03.001

Crowley, S., Mahony, J., & Van Sinderen, D. (2013). Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science and Technology, 33(2), 93–109. https://doi.org/10.1016/j.tifs.2013.07.004

Dallagnol, A. M., Bustos, A. Y., Martos, G. I., Valdez, G. F. de, & Gerez, C. L. (2018). Antifungal and antimycotoxigenic effect of Lactobacillus plantarum CRL 778 at different water activity values. Revista Argentina de Microbiologia, 51(2), 164–169. https://doi.org/10.1016/j.ram.2018.04.004

De Melo Pereira, G. V., Beux, M., Pagnoncelli, M. G. B., Soccol, V. T., Rodrigues, C., & Soccol, C. R. (2015). Isolation, selection and evaluation of antagonistic yeasts and lactic acid bacteria against ochratoxigenic fungus Aspergillus westerdijkiae on coffee beans. Letters in Applied Microbiology, 62(1), 96–101. https://doi.org/10.1111/lam.12520

Devi, M., Jeyanthi Rebecca, L., & Sumathy, S. (2013). Bactericidal activity of the lactic acid bacteria Lactobacillus delbreukii. Journal of Chemical and Pharmaceutical Research, 5(2), 176–180.

El Hazzam, K., Hafsa, J., Sobeh, M., Mhada, M., Taourirte, M., Kacimi, K. E. L., & Yasri, A. (2020). An insight into saponins from Quinoa (Chenopodium quinoa Willd): A review. Molecules, 25(5). https://doi.org/10.3390/molecules25051059

Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes, 12(1). https://doi.org/10.1080/19490976.2020.1801944

Gamboa, C., Bojacá, C. R., Schrevens, E., & Maertens, M. (2020). Sustainability of smallholder quinoa production in the Peruvian Andes. Journal of Cleaner Production, 264, 121657. https://doi.org/10.1016/j.jclepro.2020.121657

Garcia Torres, S. G., Ilyina, A., Ramos-Gonzalez, R., Hernandez, S. C., & Diaz-Jimenez, L. (2019). Interaction between Cobalt Ferrite Nanoparticles and Aspergillus Niger Spores. IEEE Transactions on Nanobioscience, 18(4), 542–548. https://doi.org/10.1109/TNB.2019.2940354

Guarniz-Benites, J., & Valdez-Arana, J. (2019). Morphological identification of mycotoxigenic fungi in accessions of quinoa (Chenopodium quinoa Wild.) of the Peruvian Coast and Sierra. Scientia Agropecuaria, 10, 327–336.

Ismail, Y. S., Yulvizar, C., & Mazhitov, B. (2018). Characterization of lactic acid bacteria from local cows milk kefir. IOP Conference Series: Earth and Environmental Science, 130(1), 0–8. https://doi.org/10.1088/1755-1315/130/1/012019

Lind, H., Jonsson, H., & Schnurer, J. (2005). Antigungal effect of dairy propionobacteria-contribution of organic acid. International Journal of Food Microbiology, 98, 157–165.

Luz, C., D’Opazo, V., Quiles, J. M., Romano, R., Mañes, J., & Meca, G. (2020). Biopreservation of tomatoes using fermented media by lactic acid bacteria. Lwt, 130, 109618. https://doi.org/10.1016/j.lwt.2020.109618

Luz, C., Saladino, F., Luciano, F. B., Mañes, J., & Meca, G. (2017). In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT - Food Science and Technology, 81, 128–135. https://doi.org/10.1016/j.lwt.2017.03.053

Magnusson, J., Ström, K., Roos, S., Sjögren, J., & Schnürer, J. (2003). Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters, 219(1), 129–135. https://doi.org/10.1016/S0378-1097(02)01207-7

Manini, F., Casiraghi, M. C., Poutanen, K., Brasca, M., Erba, D., & Plumed-Ferrer, C. (2016). Characterization of lactic acid bacteria isolated from wheat bran sourdough. LWT - Food Science and Technology, 66, 275–283. https://doi.org/10.1016/j.lwt.2015.10.045

Mariam, S. H., Zegeye, N., Tariku, T., Andargie, E., Endalafer, N., & Aseffa, A. (2014). Potential of cell-free supernatants from cultures of selected lactic acid bacteria and yeast obtained from local fermented foods as inhibitors of Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus. BMC Research Notes, 7(1), 1–9. https://doi.org/10.1186/1756-0500-7-606

Mirabile, G., Bella, P., Conigliaro, G., Giambra, S., Alberto Vazquez, M., Davino, S., & Torta, L. (2019). Fungal contaminants in Sicilian livestock feeds and first studies on the enzymatic activity of Aspergillus isolates. Cuban Journal of Agricultural Science, 53(4), 373–386.

Oliveira, H. R., Bassin, I. D., & Cammarota, M. C. (2019). Bioflocculation of cyanobacteria with pellets of Aspergillus niger: Effects of carbon supplementation, pellet diameter, and other factors in biomass densification. Bioresource Technology, 294(September), 122167. https://doi.org/10.1016/j.biortech.2019.122167

Oliveira, P. M., Zannini, E., & Arendt, E. K. (2014). Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiology, 37, 78–95. https://doi.org/10.1016/j.fm.2013.06.003

Pappier, U., Fernández Pinto, V., Larumbe, G., & Vaamonde, G. (2008). Effect of processing for saponin removal on fungal contamination of quinoa seeds (Chenopodium quinoa Willd.). International Journal of Food Microbiology, 125(2), 153–157. https://doi.org/10.1016/j.ijfoodmicro.2008.03.039

Pelikanova, J., Liptakova, D., Valík, L., & Stančeková, K. (2011). Evaluation of the growth of selected lactobacilli in pseudocereal substrate. Potravinarstvo, 4, 53–57.

Ray, S., U. R. y R. C. (2016). An overview of encapsulation of active compounds used in food products by drying technology, ,. Food Biosci, 13, 76–83.

Rodríguez, Y., Rojas, A., & Rodríguez, S. (2016). Encapsulation of Probiotics for Food Applications. Biosalud, 15, 106–115.

Rouxel, M., Barthe, M., Marchand, P., Juin, C., Mondamert, L., Berges, T., Blanc, P., Verdon, J., Berjeaud, J., & Aucher, W. (2020). Characterization of antifungal compounds produced by lactobacilli in cheese-mimicking matrix: Comparison between active and inactive strains. Food Microbiol, 10, 1016. https://doi.org/1016/j.ijfoodmicro.2020.108798.

Saladino, F., Luz, C., Manyes, L., Fernández-Franzón, M., & Meca, G. (2016). In vitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement. Food Control, 67, 273–277. https://doi.org/10.1016/j.foodcont.2016.03.012

Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S.-B., Hubka, V., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Susca, A., Tanney, J. B., Varga, J., Kocsubé, S., Szigeti, G., Yaguchi, T., & Frisvad., J. C. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studios in Mycology, 78, 141–173. https://doi.org/10.1016/j.simyco.2014.07.004

Siedler, S., Balti, R., & Neves, A. R. (2019). Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Current Opinion in Biotechnology, 56, 138–146. https://doi.org/10.1016/j.copbio.2018.11.015

Solairaj, D., Guillaume Legrand, N., Yang, Q., & Zhang, H. (2020). Isolation of pathogenic fungi causing postharvest decay in table grapes and in vivo biocontrol activity of selected yeasts against them. Physiol Mol Plant Pathol, 1, 110.

Visagie, C. M., Houbraken1, J., Frisvad, J. C., Hong, S.-B., Klaassen, C. H. W., Perrone5, G., Seifert6, K. A., Varga, J., Yaguchi, T., & Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. STUDIES IN MYCOLOGY, 78, 343–371. https://doi.org/http://dx.doi.org/10.1016/j.simyco.2014.09.001




DOI: https://doi.org/10.23857/pc.v8i2.5182

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/