Evaluación comparativa de metodologías de control estadístico de procesos en la gestión de la calidad industrial
Resumen
El control estadístico de procesos sustenta la calidad industrial al vigilar la estabilidad, detectar cambios oportunos y guiar acciones correctivas. Esta revisión sistemática, guiada por PRISMA y basada en búsquedas multibase entre 2015 y septiembre de 2025, integró 25 artículos de acceso abierto con DOI. La extracción comparó familias metodológicas como Shewhart, CUSUM, EWMA, variantes adaptativas, enfoques no paramétricos, marcos multivariados y monitoreo de perfiles. Las métricas incluyeron ARL0, ARL1, tiempo esperado de detección y tasa de falsas alarmas. Los resultados muestran que CUSUM y EWMA reducen el ARL1 entre 25% y 35% frente a Shewhart con el mismo ARL0 en saltos de 0.5σ y en derivas, mientras mantienen FAR entre 0.002 y 0.004. En datos no normales, con mezclas o con redondeo fuerte de 0.1 unidad, los métodos no paramétricos y robustos igualan o superan la referencia en 86% a 90% de escenarios y conservan ventaja en torno a 80%. En variación conjunta, enfoques multivariados y de perfiles logran robustez del 82% con AR(1)=0.2 y del 72% con AR(1)=0.5. La elección final se alinea con tipo y magnitud del cambio, calidad de medición y dependencia temporal para maximizar sensibilidad con trazabilidad.
Palabras clave
Referencias
Abid, M., Riaz, M., Mahmood, T., & Shah, S. W. H. (2024). An enhanced nonparametric quality control chart with application related to industrial process. Scientific Reports, 14, 16336. https://doi.org/10.1038/s41598-024-64084-7
Abbasi, S. A., Yeganeh, A., & Shongwe, S. C. (2022). Monitoring non-parametric profiles using adaptive EWMA control chart. Scientific Reports, 12, 14336. https://doi.org/10.1038/s41598-022-18381-8
Ajadi, J. O., Zwetsloot, I. M., & Tsui, K.-L. (2021). A new robust multivariate EWMA dispersion control chart for individual observations. Mathematics, 9(9), 1038. https://doi.org/10.3390/math9091038
Barale, M. S., & Shirke, D. T. (2023). A control chart based on data depth for monitoring the variability in a multivariate process. Communications in Statistics—Simulation and Computation. https://doi.org/10.1080/03610918.2023.2185932
Etgar, R., & Shmueli, G. (2023). Setting process control chart limits for rounded-off measurements. Heliyon, 9(2), e13655. https://doi.org/10.1016/j.heliyon.2023.e13655
García, E., Peñabaena-Niebles, R., Jubiz-Díaz, M. A., & Perez-Tafur, A. (2022). Concurrent control chart pattern recognition: A systematic review. Mathematics, 10(6), 934. https://doi.org/10.3390/math10060934
Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis Campbell Systematic Reviews, 18, e1230. https://doi.org/10.1002/cl2.1230
Haq, A. U., & Khoo, M. B. C. (2020). Multivariate process dispersion monitoring without subgrouping. Journal of Applied Statistics, 47(9), 1652–1675. https://doi.org/10.1080/02664763.2019.1688262
Khan, I., Riaz, M., Pal, S., et al. (2023). Adaptive EWMA control chart using Bayesian approach under ranked set sampling with application to Hard Bake process. Scientific Reports, 13, 9463. https://doi.org/10.1038/s41598-023-36469-7
Khalil, U., Riaz, M., Abid, M., Mahmood, T., & Shah, S. W. H. (2024). A robust CUSUM control chart for median absolute deviation based on trimming and winsorization. PLOS ONE, 19(5), e0297544. https://doi.org/10.1371/journal.pone.0297544
Malela-Majika, J. C., Adeoti, O. A., & Rapoo, E. (2024). Homogeneously weighted moving average control charts: A review and recent developments. Mathematics, 12(5), 637. https://doi.org/10.3390/math12050637
Noor-ul-Amin, M., Riaz, M., & Abbasi, S. A. (2023). Adaptive multivariate dispersion control chart with application to bimetal thermostat data. Scientific Reports, 13, 18137. https://doi.org/10.1038/s41598-023-45399-3
Ong, H. C., Alih, E., Magdalin, S., & Lim, P. (2015). A control chart based on cluster-regression adjustment for retrospective monitoring of individual characteristics. PLOS ONE, 10(4), e0125835. https://doi.org/10.1371/journal.pone.0125835
Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Raza, M. A., Nawaz, T., Iqbal, K., et al. (2024). A nonparametric mixed exponentially weighted moving average–moving average (NPEWMA–MA) sign control chart for process monitoring. PLOS ONE, 19(12), e0307559. https://doi.org/10.1371/journal.pone.0307559
Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., & Koffel, J. B. (2021). PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Systematic Reviews, 10, 39. https://doi.org/10.1186/s13643-020-01542-z
Riaz, M., Abbas, N., Ahmer, M., & Han, D. (2019). An enhanced nonparametric EWMA sign control chart using an efficient sequential sampling mechanism. PLOS ONE, 14(11), e0225330. https://doi.org/10.1371/journal.pone.0225330
Riaz, M., Ajadi, J. O., Mahmood, T., & Abbasi, S. A. (2019). Multivariate mixed EWMA–CUSUM control chart for monitoring the process variance–covariance matrix. IEEE Access, 7, 100174–100186. https://doi.org/10.1109/ACCESS.2019.2928637
Rocha de Oliveira, R., & de Juan, A. (2022). Synchronization-free multivariate statistical process control for online monitoring of batch process evolution. Frontiers in Analytical Science, 1, 772844. https://doi.org/10.3389/frans.2021.772844
Sałaciński, T., Chrzanowski, J., & Chmielewski, T. (2023). Statistical process control using control charts with variable parameters. Processes, 11(9), 2744. https://doi.org/10.3390/pr11092744
Shea, B. J., Reeves, B. C., Wells, G., et al. (2017). AMSTAR 2: A critical appraisal tool for systematic reviews that include randomized or non-randomized studies of healthcare interventions, or both. BMJ, 358, j4008. https://doi.org/10.1136/bmj.j4008
Talordphop, K., Sukparungsee, S., & Areepong, Y. (2022). Performance of a new nonparametric Tukey modified EWMA–MA control chart. PLOS ONE, 17(9), e0275260. https://doi.org/10.1371/journal.pone.0275260
Yu, J., & Li, Y. (2020). Comparative study on exponentially weighted moving average approaches for the self-starting forecasting process. Applied Sciences, 10(20), 7351. https://doi.org/10.3390/app10207351
Zaagan, A. A., Riaz, M., Rehman, M., & Noor-ul-Amin, M. (2024). Parameter-free AEWMA control chart for dispersion in process monitoring. Scientific Reports, 14, 1145. https://doi.org/10.1038/s41598-024-61408-5
Sterne, J. A. C., Hernán, M. A., Reeves, B. C., et al. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 355, i4919. https://doi.org/10.1136/bmj.i4919.
DOI: https://doi.org/10.23857/pc.v10i10.10567
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/